A Simple Chi-Square Statistic for Testing Homogeneity of Zero-Inflated Distributions.

نویسندگان

  • William D Johnson
  • Jeffrey H Burton
  • Robbie A Beyl
  • Jacob E Romer
چکیده

Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A score-type test for heterogeneity in zero-inflated models in a stratified population.

We propose a score-type statistic to evaluate heterogeneity in zero-inflated models for count data in a stratified population, where heterogeneity is defined as instances in which the zero counts are generated from two sources. Evaluating heterogeneity in this class of models has attracted considerable attention in the literature, but existing testing procedures have primarily relied on the con...

متن کامل

Test for homogeneity in gamma mixture models using likelihood ratio

A testing problem of homogeneity in gamma mixture models is studied. It is found that there is a proportion of the penalized likelihood ratio test statistic that degenerates to zero. The limiting distribution of this statistic is found to be the chi-bar-square distributions. The degeneration is due to the negative-definiteness of a complicated random matrix, depending on the shape parameter und...

متن کامل

Quasi-negative binomial distribution: Properties and applications

In this paper, a quasi-negative binomial distribution (QNBD) derived from the class of generalized Lagrangian probability distributions is studied. The negative binomial distribution is a special case of QNBD. Some properties of QNBD, including the upper tail behavior and limiting distributions, are investigated. It is shown that the moments do not exist in some situations and the limiting dist...

متن کامل

An accurate test for homogeneity of odds ratios based on Cochran’s Q-statistic

BACKGROUND A frequently used statistic for testing homogeneity in a meta-analysis of K independent studies is Cochran's Q. For a standard test of homogeneity the Q statistic is referred to a chi-square distribution with K-1 degrees of freedom. For the situation in which the effects of the studies are logarithms of odds ratios, the chi-square distribution is much too conservative for moderate si...

متن کامل

Pearson-Fisher Chi-Square Statistic Revisited

The Chi-Square test (χ 2 test) is a family of tests based on a series of assumptions and is frequently used in the statistical analysis of experimental data. The aim of our paper was to present solutions to common problems when applying the Chi-square tests for testing goodness-of-fit, homogeneity and independence. The main characteristics of these three tests are presented along with various p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Open journal of statistics

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2015